如何有理有据地证明——氢气和燃料电池车的安全性
2018-12-04
中国电源产业网

导语:近期张家口爆炸事件将氢能的安全问题推上了风尖浪口,媒体众说纷纭,但后续报道也证实了此次爆炸的原因并不在氢能,从氢能全产业链来看,其安全性还是较高的。
近期张家口爆炸事件将氢能的安全问题推上了风尖浪口,媒体众说纷纭,但后续报道也证实了此次爆炸的原因并不在氢能,从氢能全产业链来看,其安全性还是较高的。
所以能链希望能够科普氢能安全的相关知识,帮助许多媒体和产业外的人士更好地了解氢能的安全性。
氢气与氢燃料电池车安全性科普
与常规能源相比,氢气有很多特性。其中既有有利于安全的属性,也有不利于安全的属性。有利于安全的属性有:扩散系数和浮力更大、单位体积或单位能量的爆炸能更低等;不利于安全的属性有:爆炸极限范围更宽,更容易泄漏,火焰传播速度更快等。
泄露性:泄露速度快于常见燃料,但泄露总能量不高
氢气相对比液体燃料和其他气体,更容易从小孔中泄露,因此氢气相对于其他燃料的泄露速度更快。氢气的扩散速度是天然气的3.8倍。
实际当中,氢气易泄漏更多的是通过燃料管线、阀门、高压储罐上出现的微小裂缝。
通过对燃料运输系统的合理设计,可以避免采用厚度很薄的材料。
扩散性:具有很高的扩散系数和浮力,泄漏时可迅速降低浓度
与汽油、丙烷和天然气相比,氢气具有更大的浮力(快速上升)和更大的扩散性(横向移动)。
氢气的密度仅为空气的7%,而天然气的密度是空气的55%。所以即使在没有风或不通风的情况下,它们也会向上升,而且氢气会上升地更快一些。但丙烷和汽油气都比空气重,所以它们会停留。
爆炸性:爆炸极限范围宽,但爆炸能很低且不产生浓烟和灰霾
在空气中,氢的爆炸范围很宽,而且点火能不高。氢气的爆炸极限范围(体积分数)是4%-75.6%,最小点火能仅为0.02mJ。而其他燃料的爆炸极限范围则要窄得多,点火能也要高得多。
一般来说,氢气爆炸要达到两个条件,除了要满足氢气的爆炸极限,还要施加静电、明火或混合空气温度达到527℃及以上。氢气爆燃的条件是有先后顺序的,首先要满足浓度,然后再满足点燃条件。
如果已经有点燃条件,那么氢气只会排出多少就燃烧多少,不会爆燃,就像煤气灶燃烧燃气一样。
从爆炸上限(UEL)考虑,在泄漏量比较大的情况下,天然气的浓度超过15%,或者汽油气的浓度超过7.8%,的确要比氢气的浓度超过75%要容易的多。
但在实践中经常发生的情况是,一般通过限制最大可能的燃料流量或者增加空气流通量尽量使燃料混合物的浓度低于爆炸下限(LEL)。
所以爆炸下限比爆炸极限范围更好地表示燃料空气混合物的着火趋势。而氢气的爆炸下限是汽油气的4倍、丙烷的1.8倍,只是略低于天然气。
在特定条件下(爆炸下限附近,燃料浓度为4%-5%),引爆氢气/空气混合物所需要的能量与点燃天然气/空气混合物所需的能量基本相同。
这是由于:氢气的最小点火能是在浓度为25%-30%的情况下得到的,在较高或较低的体积分数情况下,引爆氢气所需的点火能会迅速增加。
如果发生爆炸,氢气的爆炸能量是常见燃气中最低的,特别就单位体积爆炸能而言,氢气爆炸能仅为汽油气的1/22。
在工程上,一般通过安装探测器警报与排风扇来共同控制氢气浓度保持在4%的爆炸下限以下,并且探测器的灵敏度设置远远低于爆炸下限,只有安全保护系统出现重大问题,才会造成氢气大量泄露,而出现这种情况的概率是很小的。
氢气的储运安全吗?——以气氢拖车运输为主,从充装到储运安全措施完善
储氢的方式主要分为:低温液态储氢、高压气态储氢和储氢材料三种。
氢的质量能量密度很高,大约是汽油的3倍,但体积能量极低,常温常压下比汽油低4个数量级。较为现实的做法是在生产厂将制得的氢气压缩或液化后进行运输和储存。
运氢的方式主要分为:气氢拖车运输(tubetrailer)、气氢管道运输(pipeline)和液氢罐车运输(liquidtruck)。
拖车运输适用于将制氢厂的氢气输送到距离不太远而同时需用氢气量不很大的用户,前期投资不高;而管道运输前期投入高,适用于大规模的输送;液氢罐车的运输能力强但仍存在技术难点。
因而,从现阶段加氢站对运输距离(<500km,200km为宜)和运输规模(10吨/天)的需求来看,氢气最佳的运输方式仍是气氢拖车。
我国常用的高压管式拖车一般装8根高压储气管。其中高压储气管直径0.6m、长11m、工作压力35MPa、工作温度为-40~60°C、单只钢瓶水容积为2.25m3,重量2730kg。
这种车总重26030kg,装氢气300kg以上,输送氢气的效率只有1.1%,未来更高压力的存储会提升载氢能力。
气氢拖车系统的运行过程如下:空载气氢拖车在集中制氢厂加氢到满载,然后车辆行驶到加氢站,直接卸下车上管状储存容器作为加氢站的存贮设备,同时拾起原本位于加氢站的“空载”管状容器,运回集中生产厂开始新一轮的加载。
从氢气的充装阶段看,为了常温下将7kPa的氢气多步压缩至20MPa甚至更高专供氢气长管车充装,整个氢气充装工艺十分复杂,包括压缩机、罐装系统等各环节都有相应的安全措施:
氢气压缩机的安全保障
氢气压缩机采用可编程控制器进行集中控制,控制系统还设置有各种自动保护功能和故障报警及故障信息显示功能,可以监控压缩机各处压力,一旦压力超出规定范围,压缩机连锁自动停机以保证安全。
氢气充装系统的安全保障
(1)超压保护:在氢气充装排上设置氢气超压泄压安全阀,避免氢气充装系统发生超压事故。
(2)回流保护:在氢气充装排上设置氢气回流阀,氢气回流利用,减少排放大气的氢气量,既利于安全,也减少了浪费。
(3)放空保护:在充装排上设置氢气放空管道,在氢气压缩机开、停车时,进行放空,既利于氢气系统的提纯,又避免形成爆炸性的混合气体,保证了生产系统的安全。
除此之外,氢气充装地点都配有氮气灭火系统等消防措施,在氢气容易泄漏的爆炸危险区域都设置有氢气检漏报警装置,保障整个氢气充装站的生产设备及人身安全。
从氢气的运输过程来说,主要依靠气氢长管拖车。长管拖车总体结构分行走机构、大容积钢质无缝钢瓶(即气瓶)及其连接装置三部分。
气氢长管拖车装载的压缩氢气工作压力高,使用时需经常来往于城市道路及建筑密集地带,安全问题非常重要,有诸多安全设置:
气瓶质量:
气瓶作为长管拖车的主要承压部件,其质量与长管拖车的安全性能密切相关。因此气瓶内外表面均经过喷丸处理,并用内窥摄像系统逐只进行内部全面检查,确保内部质量。
气瓶成形及水压试验后逐只进行磁粉检测,确保不得有任何裂纹状缺陷存在,且气瓶的两端螺纹均经磁粉检测,确保连接螺纹质量可靠。
爆破片装置:
爆破片装在气瓶的两端,较安全阀体积小、重量轻,但密封十分可靠,同时其泄放面积较同体积的安全阀泄放面积要大得多。
压力表:
气瓶充卸气管路上设置压力表一块,量程取1.5-3倍的工作压力,精度1.5级。压力表采用防震型,其前端设置压力表阀,便于更换拆卸。
温度计:
考虑到工作环境温度及充气时气体温度升高、卸气时气体温度降低等因素影响,温度计测量范围应覆盖最低和最高工作温度,测量范围应取-40-80。温度计多采用双金属型,读数方便,坚固耐用,且采用防护套管与介质隔开,易于更换拆卸。
安全联锁装置:
装卸气过程中,即操作仓门打开状态,严禁拖车启动运行,否则会造成装卸软管等连接部位拉断、气体泄漏等严重事故。
导静电装置:
长管拖车尾部设置导静电接地带,操作仓管路上设置导静电片,可随时导出运行时及充卸气时积聚的静电荷,不至于突然放电而产生电火花。
除此以外,气氢长管拖车的装卸操作有标准的操作历程,只要工作人员按照标准操作可以有效保障装卸安全。
并且根据上海危险气体运输法规规定,在气温大于30oC时,仅能在夜间运输,这也降低了气氢长管拖车运输的危险性。
燃料电池车辆安全吗?——设计完备提供全方位防护,实际运行安全有效
由于氢气不同的物化特性,如何应用于燃料电池车中依然可以保证安全。我们从车载供氢系统的安全性角度进行全面的介绍。
车载供氢系统是燃料电池汽车的重要组成部分,功能主要是为燃料电池系统提供稳定压力的氢气,而其安全措施主要从预防与监控两方面着手。
一方面通过完整的安全辅助装置实施良好的预防,另一方面通过合理的布置各类传感器形成完善的监控,通力合作维护车载供氢系统的安全性。
从技术设计的角度说,车载供氢系统主要由高压储氢瓶、加注口、单向阀、安全阀、溢流阀、减压阀、电磁阀、热溶栓、压力和温度传感器以及氢管路等零部件组成。
其不仅应具备过温保护、低压报警、过压保护、过流保护等功能,还考虑到了碰撞安全、氢气泄漏的控制等。
过温保护:
燃料电池车的高压储氢罐上一般会安装温度传感器用来检测气罐内气体温度,由这些传感器将气罐内气体的温度信号发送到驾驶室仪表盘上,通过气体温度的变化来判断外界是否有异常情况发生。
低压报警:
储氢罐上安装的压力传感器主要用于判断气罐中剩余氢气量,以保证车辆的正常行驶,当压力低于某值时可以提示驾驶员加注氢气。其次,驾驶员可根据仪表盘上的压力读数判断氢气罐是否有泄漏发生。
起火防护:
当车身处于起火环境中,温度传感器和压力传感器会检测到储氢瓶内气体温度和压力的异常并切断氢气供应。同时,为防止储氢瓶因高温高压爆炸,瓶阀上安装了易熔栓。
以丰田的Mirai为例,其易熔栓在110℃的温度下易熔栓会熔解,氢气可以以每分钟不超过118NL的速度逐渐排出,在60分钟内排空。
过压保护:
当气罐中氢气压力超过设定值时,能通过气罐安全阀自动泄压,例如瓶体温度由于某种原因突然升高造成气罐内气体压力上升,当压力超过安全阀设定值时,安全阀自动泄压,保证气罐在安全的工作压力范围之内。
并且减压阀可以将氢气的压力调节到电池所需要的范围,当出现危险时针阀可以将氢气瓶中的残余氢气安全放空。
过流保护:
溢流阀在系统正常工作时,阀门关闭。只有储氢容器或管道流量异常增大,超过规定的极限(系统压力超过调定压力)时开启溢流阀,进行过流保护,使系统压力不再增加(通常溢流阀的调定压力比系统最高工作压力高10%~20%)。
氢气泄露控制:
气罐电磁阀通常与手动截止阀联合作用,当电磁阀能正常工作时,手动截止阀处于常开状态,这时电磁阀由直流电源驱动,无电源时处于常闭状态,主要起开关气瓶的作用,与氢气泄露报警系统联动,当泄漏氢气浓度达到保护值能自动关闭,从而达到切断氢源的目的。
当气罐电磁阀失效时利用手动截止阀切断氢源,双重保障有效避免和控制氢气泄漏。单向阀在加气口或供氢管路出现损坏情况下防止气体向外泄漏并提高加气口的使用寿命。
过滤防护:
加气口具有颗粒过滤功能,与未遮蔽的电气接头、电气开关和其他点火源保持至少200mm的距离。管路电磁阀在给气罐充气时,可有效防止气体进入电池。过滤阀可防止管路中的杂质进入燃料电池,以免损坏电池。
综合以上,氢气作为新兴能源其安全应用已经十分成熟。现有的燃料电池车辆安全设计可以有效地解决氢气泄漏问题,并降低汽车剧烈碰撞等各种场合下发生氢气爆炸的可能。
来源:能链
来源:
标签:
相关信息
MORE >>-
电煤需求淡季库存高位 现货交易冷淡价格走平
4月10日,国家发展改革委经济运行调节局组织召开专题会议,要求充分认识严格合同履约的重要意义,严格落实合同履约的各项要求,强化双向监管,加大违约认定力度,严格激励约束措施,切实做好电煤中长期合同履约工作。
-
政府引导基金对社会资本的有效引导
作为政府投资的创新性政策工具,政府引导基金又称政府创业投资引导基金,是由政府出资设立,遴选专业化的风险投资机构作为子基金管理人实施市场化运作管理,进而吸引社会资本共同成立子基金,采用股权投资方式投资政府重点扶持产业的创业企业,形成财政资金杠杆放大效应的政策性基金。
-
比亚迪的大航海时代
中国引领了新能源汽车的全球普及潮流。作为引领者比亚迪,在国内拿到了超3成市场份额之后,也将目光转向国际市场,开始书写中国新能源汽车走出去的新传奇。
-
专精特新“小巨人”申请进入优化竞争,关注认定指标变化趋势
专精特新“小巨人”的申请难度也将越来越大,将从数量目标转向质量目标,认定工作和复核工作同步进行,进入不断优化的阶段。
-
企业如何参与碳交易市场?
3月15日,生态环境部发布通知,面向社会就铝冶炼行业的《企业温室气体排放核算与报告指南》和《企业温室气体排放核查技术指南》公开征求意见。
-
碳排放权交易对普通人有什么影响?
排放权交易是一种以减少温室气体排放为目的的环境政策和市场机制。它将二氧化碳的排放权视为可交易的商品,以达到降低排放总量的目标。本文将探讨碳排放权交易的意义以及其对普通人的影响。